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Introduction

Acarbose, a pseudotetrasaccharide, is one of the most 
important α-glucosidase inhibitors that have been clinically 
and widely used in the treatment of type II diabetes mel-
litus to control the blood sugar contents of patients after 
meals [13]. As the member of the C7N-aminocyclitol fam-
ily of natural products, acarbose is composed of an amino-
cyclitol and valienamine via a nitrogen bridge to C-4 of a 
6-deoxy-d-glucose, in which pseudodisaccharide acarvio-
sine (valienaminyl-4-amino-4,6-dideoxyglucose) serves as 
the active pharmacophore responsible for the inhibition of 
intestinal α-glucosidase and sucrase [9, 10].

The genus of Actinoplanes was the major microorgan-
ism for acarbose production, such as the reported Actino-
planes sp. SE50/110 [16, 19], Actinoplanes sp. CKD485-
16 [2], Actinoplanes sp. SN223/29 [6], and Actinoplanes 
utahensis ZJB-08196 [4]. Until the year 2012, the complete 
genome sequence of Actinoplanes sp. SE50/110 had been 
successfully illuminated by Schwientek et al. [12], and it 
was the first publicly available genome of the genus Actino-
planes. Additionally, Streptomyces glaucescens GLA.O 
was identified as a second strain possessing a gene cluster 
(gac-cluster) for acarbose biosynthesis, and the gac clus-
ter exhibited high similarities to the acb gene cluster from 
Actinoplanes [11]. To date, there were many reports avail-
able on how to improve acarbose production by implement-
ing various fermentation strategies, such as the medium 
optimization [14, 18], osmolality control [1, 5], and the 
performance of fed-batch fermentation [15]. Although the 
acarbose productivity was largely improved with the appli-
cation of these fermentation strategies, it should be noted 
that the synthesis of a series of acarbose analogs was often 
accompanied by the fermentation process of Actinoplanes 
sp., especially the large-scale formation of component C 
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(acarviosy-1,4-Glc-1,1-Glc) [17]. Due to its highly struc-
tural similarity to acarbose molecule, a large amount of 
component C would not only make the acarbose purifica-
tion become difficult but also reduce the product quality. 
Therefore, it is an attractive proposition to reduce and even 
eliminate component C formation during the fermentation 
process of acarbose.

Our previous studies had been detailedly focused on the 
scale-up and optimization of industrial acarbose fermenta-
tion by Actinoplanes sp. A56 in a 30,000-l fermenter, and 
approximately 5,000 mg/l of acarbose was obtained [7, 8]. 
However, the concentration of component C could highly 
reach 530  mg/l at the end of fermentation. To improve 
acarbose production and concurrently reduce byproduct 
component C formation, the present work chose osmolal-
ity level as the key fermentation parameter to investigate its 
effects on the metabolic process of Actinoplanes sp. A56, 
and then an effective and simplified osmolality-shift con-
trol strategy was successfully established.

Materials and methods

Microorganism and media

Actinoplanes sp. A56 was used for acarbose production 
throughout this study, which was maintained on agar slant 
containing (g/l): glucose, 20; peptone, 5; KCl 0.5; K2HPO4 
1.0; MgSO4 0.5; agar 20; pH 7.0.

Seed medium was composed of (g/l): starch, 10; glucose, 
20; corn steep liquor (CSL), 20; soy bean flour, 10; KH2PO4, 
1.0; MgSO4, 1.0; CaCO3, 2.0. The pH was adjusted to 7.0–
7.2 with 1 mol/l of NaOH before autoclaving.

Fermentation medium contained the following ingredi-
ents (g/l): starch, 30; glucose, 50; CSL, 10; soy bean flour, 
20; monosodium glutamate, 1.0; FeCl3, 0.5; K2HPO4 1.0; 
CaCO3 2.0. The initial pH value was adjusted to 7.2–7.4 
with 1 mol/L of NaOH prior to sterilization.

Feed medium for the fed-batch fermentation in 50-l fer-
menter was as follows (g/l): maltose 300; glucose, 100.

Cultivation conditions

The fermentation of Actinoplanes sp. A56 was performed 
in a 50-l stirred bioreactor equipped with a temperature 
probe, pH probe (Mettler Toledo) and dissolved oxygen 
(DO) probe (Mettler Toledo). Firstly, the preculture was 
carried out in a 1,000-ml shake flask containing 300 ml of 
sterile seed medium inoculated with cells from four fresh 
slants, and cultivated at 28 °C on a rotary shaker at 180 rpm 
for 48 h. Then, the seed culture (3,000 ml) was transferred 
into the 50-l fermenter with 30 l of fermentation medium. 
The fermentation conditions were controlled as follows: 

28  °C of cultivation temperature; 7.0–7.2 of pH value 
through automatic feedback with 1 mol/l of NaOH or HCl; 
40–50 % of DO concentration by adjusting agitation speed 
and airflow rate; 168 h of time cycle.

To investigate the effects of osmolality levels on Actino-
planes sp. A56 fermentation, the required osmolalities were 
associated with the total sugar concentrations in broths by 
adjusting the feeding rate of feed medium, as described in 
our previous report [7].

Analytical methods

Cell biomass was quantified with dry cell weight (DCW). 
The concentrations of acarbose and component C in fer-
mentation broths were determined using HP1100 HPLC 
system (Agilent), as reported previously [8]. The osmolal-
ity of the fermentation broth was measured by the determi-
nation of freezing point depression.

All assays were performed in triplicate, and the results 
were presented as mean ± SD (standard deviation).

Results and discussion

Effects of various osmolality levels on the fermentation 
processes of Actinoplanes sp. A56

For an investigation on the effect of osmolality on the fer-
mentation process of Actinoplanes sp. A56, the osmolality 
levels of fermentation broths were controlled at 250–300, 
350–400, 450–500, and 550–600  mOsm/kg, respectively. 
Table 1 summarizes the time courses of cell growth, acar-
bose production and component C formation.

As shown in Table  1, a higher osmolality level would 
exert a negative influence on the cell growth of Actino-
planes sp. A56. Furthermore, compared to the fermentation 
processes with 250–300 and 350–400 mOsm/kg of osmo-
lality levels, a higher osmolality level (450–500 and 550–
600  mOsm/kg) would cause Actinoplanes sp. A56 myce-
lium prematurely entry into the autolysis period (at 144 h).

Maltose was a direct precursor incorporated into acar-
bose molecule, and it was reported that a relatively higher 
osmolality level could accelerate the intracellular trans-
port of maltose, resulting in an increase of acarbose pro-
duction [3]. The existing literatures revealed that 400–
500  mOsm/kg of osmolality was favorable for acarbose 
production by Actinoplanes, and both lower and higher 
osmolalities had severely negative effects [17]. Simi-
larly, our research showed that although 250–300  mOsm/
kg was the most advantageous osmolality level for cell 
growth of Actinoplanes sp. A56, the lowest acarbose yield 
(2,350.3 ± 60.3 mg/l) was obtained, as shown in Table 1. 
When the osmolality concentration was controlled at 
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450–500  mOsm/kg, the maximum acarbose titer reached 
3,370.8  ±  78.4  mg/l at 144  h, which was significantly 
higher than those obtained in the other three fermenta-
tion processes. However, it was noteworthy that an obvi-
ous upward trend of component C could be observed 
along with the increases of osmolalities, as also shown 
in Table  1. Additionally, the component C concentrations 
under the relatively higher osmolalities (450–500 and 550–
600 mOsm/kg) were sharply increased from 214.2 ± 11.6 
(144  h) to 515.8  ±  18.8  mg/l (168  h) and 261.8  ±  14.8 
(144 h) to 568.2 ± 13.7 mg/l (168 h), respectively.

In the acarbose-producing Actinoplanes sp. CKD485-
16, Choi and Shin [2, 3] found that excess component C 
was produced in later stages of acarbose fermentation, 
which was derived directly from acarbose with a novel 
intracellular glucosyltransferase. For Actinoplanes sp. A56, 
a higher osmolality level would exert a negative influence 
on the specific activities of the key carbon metabolism 
enzymes (data not shown), resulting in a premature cell 
autolysis. And it was just during this autolysis period that 
an obviously negative increase of acarbose and a sharp rise 
in component C formation were synchronously appeared. 
As a hypothesis, the enormous component C accumula-
tion was due to the severe decline of the metabolic activi-
ties of Actinoplanes sp. A56. Thus, it would probably be an 
effective measure to decrease component C formation by 
improving the metabolic activities of Actinoplanes sp. A56 
at the later stages of fermentation.

Effects of osmolality-shift strategy on acarbose 
biosynthesis and component C formation

As mentioned above, when the fermentation of Actino-
planes sp. A56 was performed under a relatively high 
osmolality, the decline of metabolic activities would result 
in an obvious decrease of acarbose production together 
with a sharp increase of component C formation during 
the later stages of fermentation (144–168  h). To improve 
acarbose production and simultaneously avoid excessive 
synthesis of component C, an osmolality-shift strategy was 
further carried out for Actinoplanes sp. A56 fermentation 
in 50-l fermenter, in which the osmolality levels were con-
trolled at 250–300 (0–48 h), 450–500 (49–120 h) and 250–
300 mOsm/kg (121–168 h), respectively.

Figure  1 shows the time profiles of osmolality levels, 
cell growth, acarbose production and component C forma-
tion under the two fermentation processes with the osmo-
lality-shift and osmolality-stat (450–500 mOsm/kg) control 
strategies. As expected, a significant improvement of the 
cell growth condition was observed using the osmolality-
shift strategy. As shown in Fig.  1b, the maximum DCW 
was up to 29.3 ± 0.9 g/l, which was obviously higher than 
that (26.8 ± 0.7 g/l) obtained in the case of osmolality-stat Ta
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fermentation. More importantly, the autolysis phenom-
enon of Actinoplanes sp. A56 was disappeared during the 
later stages (144–168  h) of fermentation. From Fig.  1c, 
when comparing the fermentation process with an osmo-
lality-stat control strategy, the acarbose yield increased by 
20.42  % under the osmolality-shift fermentation condi-
tion, reaching at 4,132.8  ±  111.4  mg/l. Moreover, a sig-
nificant decline of component C formation was observed, 
as also shown in Fig. 1c. When using the osmolality-shift 

strategy for Actinoplanes sp. A56 fermentation, the final 
accumulation amount of component C was decreased from 
498.2  ±  27.1  mg/l to 307.2  ±  9.5  mg/l, with a 38.34  % 
decline. Further calculations revealed that the final propor-
tion of acarbose/component C was improved from 6.72 to 
13.45.

Due to exhibiting inhibitory effects on glycosidase and 
glucosyltransferase, some researchers attempted to apply 
C7-N-aminocyclitols to inhibit the conversion reaction of 
acarbose to component C. For example, Choi and Shin [3] 
found that valienamine was a potent inhibitor, and 10 μM 
of valienamine could reduce component C yields to levels 
of 38–56 mg/l, corresponding to 89–93 % yield reduction 
compared with control. Additionally, Xue et al. [20] com-
pared the effects of validamycin A, validamycin B, vali-
damycin D, validamycin E, valienamine, and validamine 
on acarbose production and component C formation by 
Actinoplanes utahensis ZJB-08196, and the results showed 
that validamine was the most effective compound, which 
could make acarbose titer increase from 3,560  ±  128 to 
4,950 ± 156 mg/l, and component C concentration concur-
rently decrease from 289 ± 24 to 107 ± 29 mg/l in batch 
fermentation after 168 h of cultivation. Although an exoge-
nous addition of C7-N-aminocyclitols could play a positive 
role in component C reduction, its high cost would make 
industrial acarbose fermentation become uneconomical.

During most microbial fermentation processes, a shift 
strategy of well-direct fermentation parameters, such as 
pH shift and DO shift, can provoke physiological changes 
that positively affect process performance, resulting in the 
improvement of cell growth and metabolites biosynthe-
sis [21]. With broth osmolality as the crucial fermentation 
parameter, the present work successfully established an 
osmolality-shift fermentation strategy to improve acarbose 
production and concurrently reduce component C forma-
tion during Actinoplanes sp. A56 fermentation process. 
Although its component C concentration was higher than 
those obtained under C7-N-aminocyclitols addition, this 
kind of osmolality-shift control strategy represented a valu-
able attraction for industrial acarbose fermentation.

Conclusions

By choosing osmolality level as the key fermentation 
parameter of acarbose-producing Actinoplanes sp. A56, 
the present work successfully established an effective and 
simplified osmolality-shift control strategy to improve 
acarbose production and concurrently reduce component 
C formation. As a result, the acarbose yield increased by 
20.42 %, and the final proportion of acarbose/component C 
was improved from 6.72 to 13.45.
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